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ABSTRACT

Observational andmodel resolution limitations currently preclude analysis of the smallest scales important

to numerical prediction of convective storms. These missing scales can be recovered if the forecast model is

integrated on a sufficiently fine grid, but not before errors are introduced that subsequently grow in scale and

magnitude. This study is the first to systematically evaluate the impact of these initial-condition (IC) reso-

lution errors on high-resolution forecasts of organized convection. This is done by comparing high-resolution

supercell simulations generated using identical model settings but successively coarsened ICs. Consistent with

the Warn-on-Forecast paradigm, the simulations are initialized with ongoing storms and integrated for 2 h.

Both idealized and full-physics experiments are performed in order to examine how more realistic model

settings modulate the error evolution.

In all experiments, scales removed from the IC (wavelengths , 2, 4, 8, or 16 km) regenerate within

10–20min of model integration. While the forecast errors arising from the initial absence of these scales

become quantitatively large in many instances, the qualitative storm evolution is relatively insensitive to the

IC resolution. It therefore appears that adopting much finer forecast (e.g., 250m) than analysis (e.g., 3 km)

grids for data assimilation and prediction would improve supercell forecasts given limited computational

resources. Thismotivates continued development ofmixed-resolution systems. The relative insensitivity to IC

resolution further suggests that convective forecasting can be more readily advanced by improving model

physics and numerics and expanding extrastorm observational coverage than by increasing intrastorm ob-

servational density.

1. Introduction

There have been numerous simulation studies of the

predictability of organized convective storms. Focuses

of these investigations include sensitivity to model grid

spacing (e.g., Weisman et al. 1997; Adlerman and

Droegemeier 2002; Bryan et al. 2003; Fiori et al. 2010;

Bryan andMorrison 2012; Verrelle et al. 2015; Potvin and

Flora 2015), prescribed small-scale (e.g., Hohenegger and

Schär 2007; Zhang et al. 2016) and large-scale errors in

the initial condition (Wandishin et al. 2008, 2010;

Cintineo and Stensrud 2013; Durran and Weyn 2016),

and data assimilation analysis errors arising from lack of

low-level observations (e.g., Dong et al. 2011; Potvin

and Wicker 2013a). Little has been done, however, to
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examine the sensitivity of storm forecasts to initial-

condition (IC) resolution. Impacts of limited IC

resolution are of critical concern to the envisioned

Warn-on-Forecast (WoF) paradigm (Stensrud et al.

2009, 2013), in which kilometer-scale ensemble forecasts

will be initialized from analyses of storms and used to

generate unprecedentedly high-resolution probabilistic

convective hazard guidance.

If storm evolution is relatively insensitive to IC reso-

lution, then sacrificing analysis grid resolution for fore-

cast grid resolution could yield more accurate forecasts

given limited computational resources. The simplest

way to do this is to perform data assimilation on a rel-

atively coarse grid, then interpolate to a finer grid on

which the model is subsequently integrated over the

desired forecast period. Another is to use mixed-

resolution data assimilation methods to obtain finer

analyses than can be achieved with single-resolution

methods. Mixed-resolution approaches have long been

used in variational data assimilation schemes (e.g.,

Courtier et al. 1994) and have more recently been de-

veloped for ensemble (e.g., Gao and Xue 2008;

Rainwater and Hunt 2013) and hybrid variational–

ensemble methods (e.g., Buehner et al. 2010; Kleist

and Ide 2015). Combining the downscaling and mixed-

resolution data assimilation approaches could be par-

ticularly powerful.

If, on the other hand, IC resolution errors sub-

stantially impact storm evolution, then the accuracy of

convective-scale forecasts is strongly constrained by the

resolution of intrastorm observations and of real-time

data assimilation systems. Even in the limit of arbitrarily

fine data assimilation grids, unobserved scales must still

be generated by the model, either during the data as-

similation (for cycled methods) or during the sub-

sequent free model integration, and so the evolution of

IC resolution error remains a critical consideration.

Therefore, better understanding of the sensitivity of

convective forecasts to IC resolution is needed to esti-

mate practical predictability limits; inform design of

next-generation observation, data assimilation, and

prediction systems; and interpret numerical forecast

output. In addition, improved understanding of the im-

pact of small-scale errors helps illuminate the impor-

tance to storm evolution of the initial storm state versus

the larger-scale environment.

Toward these ends, we conduct both idealized and

full-physics supercell simulations to investigate the

forecast impacts of IC resolution errors. Our experi-

ments are designed such that limited IC resolution is

essentially the only source of forecast error; the IC is

otherwise perfect (apart from random perturbations,

the necessity of which is explained later), as is the

forecast model. To our knowledge, this is the first study

to isolate the impact of IC resolution on the evolution

of convection, apart from the set of experiments in

Potvin and Flora (2015) that inspired the present in-

vestigation. Our results strongly support the viability of

downscaling data assimilation analyses and/or using

mixed-resolution data assimilation methods to initial-

ize finer-scale forecasts, at least in the limit of a perfect

model. The (perhaps surprising) lack of sensitivity to

IC resolution exhibited in our experiments indicates

that the evolution of many physically and societally

important aspects of supercells, including low-level

rotation and heavy rainfall, are primarily determined

by larger scales.

It should be borne in mind that in addition to IC res-

olution errors, other operational forecast error sources

(e.g., physics parameterization, finite grid resolution,

large-scale analysis errors) will remain significant for

decades to come. It is also important to note that the error

growth modeled herein presumably underestimates the

error growthwithin real convection due to the inability of

the prescribed grid spacing (250 or 333m) to resolve

the finest scales important to convective evolution

[O(10–100)m; Bryan et al. 2003]. For these two reasons,

this study provides an upper-limit estimate of the pre-

dictability of storms initialized with missing scales. Thus,

IC resolution requirements inferred from our experi-

ments should be regarded as necessary, but not sufficient,

conditions for accurate storm prediction.

The rest of the paper is organized as follows. Section 2

motivates our use of an ensemble simulation framework

to investigate IC resolution errors and describes the

model configuration and verification methods used for

our simulations. Section 3 presents and discusses quan-

titative and qualitative analyses of the evolution of IC

resolution errors in our experiments. Section 4 summa-

rizes the major implications of the results and outlines

avenues for future work.

2. Methodology

a. Motivation for an ensemble framework

Convective storm evolution is known to be particu-

larly sensitive to small-scale IC errors owing to the rapid

upscale growth of perturbations withinmoist convection

(e.g., Zhang et al. 2006; Hohenegger and Schär 2007).
The rapid divergence of solutions initialized with very

similar initial conditions strongly motivates adoption of

an ensemble framework for our experiments. Figure 1

illustrates why this is so. The green curve in each sche-

matic represents a forecast trajectory (simplified to two

dimensions) for a control simulation that we label

‘‘TRUTH.’’ The black (dashed) curve represents a
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forecast trajectory using the same IC as for TRUTH but

with small-scale, low-amplitude noise added. The gray

shaded area represents the solution space spanned by an

ensemble of such forecasts that we call ‘‘CNTL.’’ The

red dashed curve represents a forecast trajectory ini-

tialized from the same IC (including noise) as the in-

dicated CNTL forecast trajectory (black dashed curve),

but with the IC resolution degraded prior to adding the

perturbations. We call the ensemble of filtered-IC sim-

ulations ‘‘FILT.’’ Now, consider three potential sce-

narios as the two ensembles evolve over the forecast

period of interest. If, at all forecast times, the bias arising

from the degraded IC resolution is large relative to the

ensemble forecast spread arising from the random IC

perturbations (scenario A; Fig. 1a), then any pair of

corresponding simulations sampled from CNTL and

FILT would qualitatively represent the differences be-

tween the two ensembles in general. A deterministic

framework would then suffice for assessing the general

impact of degraded IC resolution on forecasts of storms

approximating those in TRUTH. Now, consider the

scenario where the forecast bias is commensurate with

the forecast spread (scenario B; Fig. 1b). The differences

between a given pair of simulations in this case are

highly dependent on the particular realization of noise

added to the initial conditions. That is, the sensitivity to

initial-condition resolution is so flow dependent in this

scenario that comparing only a single pair of simulations,

rather than the two ensembles in their entirety, could

give a false impression of the systemic impact of IC res-

olution errors (i.e., forecast bias). Put another way: ex-

amining the impact of IC resolution errors on a single

simulation is impractical in this case since the error evo-

lution cannot be generalized beyond that one storm re-

alization. Thus, this second scenario demonstrates that

the sensitivity of supercells to random perturbations may

partly obscure the IC resolution dependence in the de-

terministic framework. In the third scenario (scenario C;

Fig. 1c), the evolution of small-scale errors is so rapid that

the forecast and initial-condition errors become de-

coupled within the period of interest; that is, beyond

some lead time, the impact of IC resolution is lost because

of the limited intrinsic predictability (Lorenz 1969). Un-

der this scenario, the deterministic frameworkwould lead

to false attribution to IC resolution errors of forecast

differences arising largely or entirely from the sensitivity

of convection to random IC perturbations. The eventual

loss of the effect of IC resolution would only be detect-

able using the ensemble framework. Since the relative

frequencies of scenario A (deterministic approach suit-

able) and scenarios B and C (deterministic approach not

suitable) is uncertain a priori, we exercise caution and

adopt the ensemble framework for this study. It will be

shown at the beginning of section 3 that the impact of IC

resolution errors in our simulations does indeed exhibit

strong sensitivity to minor IC perturbations, making

the ensemble approach necessary for investigating the

evolution of IC resolution errors in forecasts of con-

vective storms.

We initialize each CNTL (FILT) ensemble member

by adding a different realization of random gridpoint

perturbations to the TRUTH (filtered TRUTH) IC.

Only the horizontal wind components and potential

temperature are perturbed, and only below 10 km

AGL; the perturbations are sampled from uniform

distributions of [21, 1]m s21 and [20.5, 0.5]K, re-

spectively. Since the role of the IC perturbations is

solely to create the ensembles necessary to investigate

IC resolution impacts in scenarios B and C, we chose

the above noise characteristics rather arbitrarily. The

only two requirements of the perturbations, which

were confirmed to be met in our experiments a poste-

riori, were that they produce ensemble solution spaces

that are 1) large enough for themean error evolution to

be reasonably general (critical for scenarios B and C)

but 2) not so large that the impact of the IC noise

dominate the impact of IC resolution error. Satisfying

the latter requirement ensures that the analyzed

FIG. 1. Schematic illustrating the need to consider potential flow

dependence of evolution of initial-condition resolution errors.

(a) Scenario A: Filtered-IC (FILT) simulations (red) initialized

from noisy realizations of TRUTH (green) exhibit qualitatively

similar differences from their unfiltered (CNTL) counterparts

(gray), rendering the deterministic framework adequate for char-

acterizing the impact of initial-condition resolution errors.

(b) Scenario B: Differences between FILT and CNTL pairs are in

some instances small relative to the ranges of the CNTL and FILT

solutions, requiring an ensemble approach to generalize the errors.

(c) Scenario C: The solution is so sensitive to tiny initial-condition

perturbations that the error correlation with initial-condition res-

olution is largely lost before the end of the forecast period.
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sensitivity to IC resolution is not unduly dependent

upon the prescribed noise characteristics, since the

errors arising from the latter largely cancel in the

ensemble-mean metrics examined herein. It is con-

firmed in section 3a that the required error cancellation

takes place. Moreover, repeating one of the sets of full-

physics experiments described later (6MAY) with the

IC perturbations inserted before rather than after fil-

tering does not substantially impact the results, further

demonstrating that the IC resolution sensitivity ana-

lyzed herein is not strongly tied to the initial noise

characteristics. All CNTL and FILT ensembles com-

prise nine members; this ensemble size was found to

produce sufficient cancellation of IC perturbation ef-

fects for the impact of IC resolution to be identified.

The process for generating CNTL and FILT ensembles

from TRUTH is depicted in Fig. 2.

b. Motivation for a simulation framework

Our experiments are designed to isolate the impact

of IC resolution errors on forecasts. In practice, these

errors would be modulated by errors in model physics

and resolution, observations (including limited cover-

age), and data assimilation schemes. Our lack of

knowledge of the characteristics of these various error

sources and their interactions (both of which are, pre-

sumably, quite flow dependent) makes it difficult to

distinguish their individual contributions to the total

error in forecasts of real-world events. Consequently,

while real-world experiments (in which forecasts are

verified using observations of the real atmosphere)

are better suited to exploring the total sensitivity of

(contemporary) prediction systems, simulation exper-

iments (in which forecasts are verified using the truth

simulation from which they are generated) enable ex-

ploration of impacts of individual error sources. In

addition, the lack of reliable atmospheric-state in-

formation in real-world analyses strongly limits the

experimental parameter space that can be explored.

For example, the impact on real-world forecasts of

accurately initializing scales down to, say, 2 km cannot

currently be examined since most of the atmospheric-

state space cannot be well estimated at such fine scales.

On the other hand, simulated atmospheric states are

completely known, vastly increasing the range of hy-

potheses that can be tested.

The combination of the simulation and real-world

approaches can provide much more insight into storm

predictability than either alone. For example, if it is

FIG. 2. Schematic summarizing the generation of the unfiltered

(CNTL) and filtered-IC (2KM, 4KM, 8KM, 16KM) ensembles. A

truth simulation (TRUTH) is initialized either by a warm bubble

(idealized model framework) or by interpolating a real-world data

assimilation analysis to a subkilometer grid (full-physics model

framework). The WRF restart file generated at the desired en-

semble initialization time is then filtered to remove IC scales below

prescribed cutoff wavelengths. Next, random perturbations are

added to the original and filtered restart files to generate ICs for

each ensemble. Finally, the ensembles are integrated over the de-

sired forecast period.

FIG. 3. SkewT plots for (a) El Reno, (b) 6May 2015, and (c) 19May 2013 simulations. Surface-based convective available potential energy

(J kg21) and 0–3-km-AGL storm-relative helicity (m2 s22) are indicated in the lower-left corner of each plot.
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found that total errors in real-world forecasts scarcely

decrease as IC resolution increases, this would suggest

that contemporary model errors and/or large-scale

analysis errors are dominating the effects of initially

missing scales—something that could not have been

known without performing both simulation and real-

world experiments. While neither approach is funda-

mentally superior to the other, we adopt the simulation

framework for our investigation since it is better suited

to our goals of isolating and precisely evaluating the

evolution of IC resolution errors.

c. Idealized simulation configuration

Idealized simulations are generated using version 3.6.1

of the Advanced Research Weather Research and Fore-

casting (ARW) Model (Skamarock et al. 2008) with typ-

ical cloud model settings. The horizontal grid spacing

and model time step are set to 333m and 1 s, respectively.

We use 50 vertical model levels, with the grid spacing

increasing from ;100m near the surface to ;700m be-

tween 15 and 20km AGL (model top). The model base

state is provided by a Rapid Update Cycle (RUC;

Benjamin et al. 2004) sounding analyzed near the 24 May

2011 El Reno, Oklahoma, tornadic supercell (Fig. 3a).

Radiation and surface physics are neglected. The

Thompson microphysics scheme (Thompson et al. 2004,

2008), which uses five hydrometeor categories and pre-

dicts two moments of the rain and cloud ice particle size

distributions, is used. Turbulence is parameterized using

the 1.5-order TKE closure. Additional model details are

given in Table 1.

Convection is initiated in the truth simulation (TRUTH_

ELRENO) by a thermal bubble with maximum potential

temperature perturbation of 5K. The control ensemble

(CNTL_ELRENO) is initialized fromTRUTH_ELRENO

(as described in section 2a and Fig. 2) after 90min of

integration, by which time an intense supercell has

developed, then integrated until time t5 120min (all times

in this paper are relative to the beginning of the control

ensemble). The supercell remains strong during the entire

forecast period (e.g., Figs. 4a,d) and produces several

tornado-like vortices (TLVs; described later).1 Filtered-IC

ensembles are generated in the same way except that the

WRF restart file is horizontally filtered prior to adding the

random perturbations. As in Potvin and Flora (2015), we

use theRaymond (1988) implicit tangent filter, which both

is very efficient and has a sharp response function. The

filter is empirically tuned to effect cutoff wavelengths

(defined herein as producing a filter response of 0.5) of 2,

4, 8, and 16km. The corresponding ensembles are labeled

2KM_ELRENO, 4KM_ELRENO, 8KM_ELRENO, and

16KM_ELRENO, respectively. We use the same nomen-

clature for the full-physics ensembles described in the next

subsection as for the ELRENO ensembles. When not

referring to one particular case, we omit the case identifier;

for example, ‘‘2KM’’ refers to an ensemble (or ensembles)

initialized with a 2-km cutoff wavelength (e.g., Fig. 2).

d. Full-physics simulation configuration

To complement the idealized simulations, we addi-

tionally generate two sets of observationally constrained,

full-physics simulations. The two full-physics TRUTH

simulations are initialized by downscaling 3-km ensem-

ble Kalman filter (EnKF; Evensen 1994; Snyder and

Zhang 2003) member analyses of the 19 May 2013 and

6 May 2015 Oklahoma tornadic supercell events. Ob-

served proximity soundings for the two cases are shown

in Figs. 3b and 3c. The initial and lateral boundary

conditions for the 3-km EnKF analyses are provided by

TABLE 1. ARW settings used in simulations on innermost grids.

ELRENO 6MAY 19MAY

Horizontal grid spacing (m) 333 250 333

Time step (s) 1 1/2 2/3

Time-integration scheme Third-order Runge–Kutta Third-order Runge–Kutta Third-order Runge–Kutta

Horizontal/vertical advection Fifth order/third order Fifth order/third order Fifth order/third order

Lateral/top boundary

conditions

Open/Rayleigh damping

layer

One-way nested/Rayleigh damping

layer

One-way nested/Rayleigh damping

layer

Turbulence parameterization 1.5-order TKE closure 1.5-order TKE closure 1.5-order TKE closure

Microphysics parameterization Thompson Thompson Thompson

Radiation parameterization — Rapid Radiative Transfer Model Rapid Radiative Transfer Model

Surface-layer physics — Yonsei University Mellor–Yamada–Janjić

Planetary boundary layer

parameterization

— — —

Explicit numerical diffusion — — —

1 In this study, a TLV is defined as a vortex that occurs within a

mesocyclone and has vorticity. 0.1 s21 at most model levels below

z 5 500m.
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the NSSL Experimental WoF System for Ensembles

(NEWS-e), which assimilated conventional observa-

tions from the Meteorological Assimilation Data Ingest

System (MADIS;Miller et al. 2007) onto a 15-km parent

grid, within which a 3-km grid was one-way nested to

spin up smaller-scale ensemble covariances in prepara-

tion for radar data assimilation [full details of the

NEWS-e configuration appear in Wheatley et al. (2015)

and Jones et al. (2016)]. We assimilate reflectivity and

radial velocity from three nearby WSR-88Ds as well as

Oklahoma Mesonet observations onto the 3-km grid

using aWRF-coupled local ensemble transformKalman

filter (LETKF; Hunt et al. 2007) system configured

similarly to theNEWS-e. TheWRF-LETKFwas adapted

from the NSSL Collaborative Model for Multiscale Atmo-

spheric Simulation (NCOMMAS)—LETKF developed

and used by Thompson et al. (2015). Assimilation onto

the 3-km grid begins at 1900 UTC in both cases, and the

2145 and 2045 UTC analyses are used for 19 May 2013

and 6 May 2015, respectively, to generate the TRUTH

simulations.

The IC for the TRUTH simulation for each of the two

cases is generated by restarting one of the 3-km en-

semble analysis members in a one-way, double-nested

configuration with 1-km and either 250- or 333-m grids,2

then integrating for 20min to allow initially unresolved

scales to generate on the subkilometer grid. Key model

settings for each case are shown in Table 1. For the

6 May 2015 case, the choice of ensemble member

analysis to downscale and the model settings for the

innermost grid were empirically tuned to obtain a sim-

ulated storm that qualitatively replicates many of the

important aspects of the observed storm evolution, in-

cluding the storm path, retention of supercellular char-

acteristics through the forecast period (Figs. 4b,e), and

production of a TLV (discussed later) at about the time

FIG. 4. Reflectivity (dBZ) at ;2 km AGL at (a)–(c) t 5 0 and (d)–(f) t 5 90 min in the (a),(d) El Reno, (b),(e) 6 May 2015, and

(c),(f) 19 May 2013 TRUTH simulations.

2 There is nothing significant about our use of 250-m (rather than

333-m) grid spacing for one of the experiments. The 250-m simu-

lation was adopted from a separate research project, and we saw no

reason to rerun it on a 333-m grid.
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that an EF3 tornado developed near Bridgecreek,

Oklahoma. The TLV in TRUTH_6MAY, however, is

much shorter lived than the actual tornado (;5 vs

;20min), which calls into question how well the model

replicates the processes contributing to the actual

tornado evolution (which is not surprising, especially

given the relatively coarse resolution).

Extensive experimentation failed to generate a

downscaled 19 May 2013 simulation that qualitatively

reproduces the actual storm evolution. In all of the

FIG. 5. Accumulated rainfall (in.) for each of the nine (a) CNTL_ELRENO and (c) CNTL_6MAYmembers, and the errors arising in

each of the (b) 8KM_ELRENO and (d) 8KM_6MAYmembers. (bottom) The ensemble means are also shown. The ELRENO fields are

rotated 408 clockwise to reduce the plotting domain sizes. The CNTL 1-in. contour is overlaid in each panel to aid comparisons.
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downscaled simulations, including the one arbitrarily

adopted for our sensitivity experiments (TRUTH_

19MAY), the modeled storms grow upscale into a me-

soscale convective system (MCS; Figs. 4c,f), while the

observed storms remain discrete through the period of

interest (not shown). A potentially related shortcoming

is that while a TLV does occur in the simulation (dis-

cussed later), it is much briefer than the EF4 Norman–

Shawnee, Oklahoma, tornado that was produced by

the corresponding observed storm (;10 vs ;60min).

Despite the limited fidelity of TRUTH_19MAY, it adds

value to our investigation in two ways. First, our use of

observationally constrained initial and boundary con-

ditions and ‘‘full’’ model physics presumably renders

this simulation more physically realistic than the ideal-

ized simulation described in the previous section

(TRUTH_ELRENO). In other words, while TRUTH_

19MAY fails to reproduce the real-world event from

which it was generated, it likely better represents the

physical evolution of organized convection than does

TRUTH_ELRENO. Second, the 19MAY experiments

enable exploration of IC resolution impacts for a

somewhat different storm mode (supercells evolving

into an MCS) than the other two cases (persistently

discrete supercells).

e. Verification of ensemble forecasts

Like most previous predictability studies, we make

use of a point-to-point error metric in assessing the

evolution of errors in our experiments—namely, the

root-mean-square error (RMSE). In some instances,

the RMSE is normalized by the mean square of the true

field to obtain the relative RMSE (RRMSE). Since we

seek to characterize errors arising from degraded IC

resolution, not from random IC perturbations (as dis-

cussed in section 2a), all RMSE and RRMSE herein

measure differences from the CNTL ensemble, not the

TRUTH simulation. It is critical to note that the double

penalty produced by phase errors (Wilks 2006) can

reduce the utility of RMSE (and RRMSE) and similar

metrics for evaluating forecasts of highly localized

phenomena like convective storms. For example, a

larger RMSE could be produced for a simulation in

which the storm is structurally identical to, but sub-

stantially displaced from, the storm in TRUTH than

for a simulation that fails to produce the storm alto-

gether. Another major limitation of verification tech-

niques involving simple metrics like RMSE is that

unless they are carefully tailored to the application at

hand, their relation to subjective assessments of fore-

cast quality can be unreliable (even in the absence of

phase errors). This is because forecasts having very dif-

ferent types and degrees of error can yield very similar

RMSEs. These limitations make point-to-point-based

verification methods insufficient for assessing the qual-

ity of convective storm forecasts.

In light of these considerations, our verification of

the ensemble forecasts includes a subjective, storm-

feature-based approach, similar to some previous

predictability studies of organized convection

(e.g., Wandishin et al. 2008, 2010; Cintineo and Stensrud

2013; Zhang et al. 2016). In addition, to avoid the

smearing that commonly arises in ensemble-mean fields

due to small displacements of features between ensem-

ble members, we compute probability-matched means

(PMMs; Ebert 2001) of the forecasts. Finally, the PMMs

are computed not for the full model fields, but for hor-

izontal (x–y) and time–height composites thereof.

Herein, ‘‘composite’’ refers to a field of maxima com-

puted over the cross section of each plotted coordinate;

for example, the composite value at a given time–height

coordinate is the maximum of the field on the inter-

secting x–y plane. Judiciously chosen composites are an

excellent way to distill the most dynamically or opera-

tionally important information from model output.

Object-based verification methods present another

promising approach to evaluating forecasts of storms

(e.g., Skinner et al. 2016), but such techniques have not

yet advanced to the point where they should replace

subjective verification, except in cases where the latter

would be unduly time consuming.

In preliminary work, we found that computing the

PMM within a prescribed neighborhood centered on

each coordinate generally produced more representa-

tive PMMs than the traditional, global approach.

This is because ensemble biases often caused the

global method to incorporate spatiotemporally distant

FIG. 6. Two different RMSE statistics valid for horizontal

w (m s21) composites from the ELRENO (blue), 6MAY (red), and

19MAY (green) experiments. Marked curves indicate RMS

differences between the CNTL and 2-, 4-, 8-, and 16-km proba-

bility-matched ensemble means and, therefore, measure ensemble

forecast bias arising from IC resolution errors. Dashed curves in-

dicate RMS differences between the probability-matched ensem-

ble means and individual ensemble members and, therefore,

measure the ensemble spread arising from IC random errors.
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ensemble output into the probability matching in cer-

tain regions, leading to PMMs that were locally un-

representative of the ensemble. The neighborhood

PMM was therefore adopted for all of the analyses

presented herein. Horizontal composite PMMs use

neighborhoods of 60 3 60 grid points, and time–height

composite PMMs use neighborhoods of 20min 3 20

model levels.

3. Results

a. Quantitative error analysis

We begin with a demonstration of the necessity of

the ensemble framework for examining the evolution of

IC resolution errors in forecasts of convective storms.

Rainfall differences between CNTL_ELRENO (Fig. 5a)

and8KM_ELRENO(Fig. 5b), andbetweenCNTL_6MAY

(Fig. 5c) and 8KM_6MAY (Fig. 5d), vary substantially with

the IC noise realization. This indicates that the ensemble

approach is required in both cases to accurately

characterize the forecast biases arising from the IC

resolution errors. The forecast biases themselves fun-

damentally differ in significance between the two

cases, however. While a northwestward displacement of

heaviest rainfall in 8KM_6MAY dominates the inter-

member variability (arising from the IC noise), there are

no visually evident biases in the 8KM_ELRENO en-

semble (cf. bottom panels of Figs. 5b and 5d). Instead,

the errors appear to arise largely from the sensitivity of

the flow to random perturbations (i.e., limited intrinsic

FIG. 7. Vertical velocity (m s21) (first column) values and (remaining columns) errors ;5 km AGL in 19MAY simulations, valid at

(a)–(e) t 5 0, (f)–(j) t 5 10, (k)–(o) t 5 60, and (p)–(t) t 5 120min. (a),(f),(k),(p) TRUTH; (b),(g),(l),(q) CNTL member 1; (c),(h),(m),(r)

CNTL member 1, but with noise localized to region indicated by a circle; (d),(i),(n),(s) 16-km member 1, except without noise; and

(e),(j),(o),(t) 16-km member 1. The TRUTH 40-dBZ contour is overlaid in each panel to aid comparisons.
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predictability), rendering the ensemble approach par-

ticularly critical in that case, since the differences be-

tween any pair of corresponding ensemble members in

CNTL_ELRENO and 8KM_ELRENO would be both

potentially large and unrepresentative of the forecast

bias arising from IC resolution error. The errors in

8KM_6MAY and 8KM_ELRENO therefore fall into

scenarios B and C from section 2a, respectively (Fig. 1).

In all of our experiments, the errors arising from the IC

perturbations cancel in the ensemble means, as required

to distinguish the impact of limited IC resolution.

Figure 6 provides a more general view of the relative

contributions of the random IC perturbations and the

IC resolution errors in our simulations. For horizontal

composites of w (shown), potential temperature u at

the lowest model level, and rainfall for all three cases,

FIG. 8. RRMSE time series, averaged using a 9-min centered window, for ensemble-mean w (m s21) in (a),(b) ELRENO, (c) 6MAY,

and (d) 19MAY experiments, colored by IC cutoff wavelength (red5 2 km; blue5 4 km; green5 8 km; orange5 16 km). Here (a) differs

from (b) only in its use of a logarithmic abscissa to highlight the more rapid growth of smaller IC errors. RRMSE calculations were

restricted to regions where ensemble-mean reflectivity . 5 dBZ.

FIG. 9. An illustration of the limited utility of point-to-point verification statistics for evaluating forecasts of convective storms. Cross

sections are shown at z’ 1.7 km of (simple) ensemble means of w (m s21), valid t5 60min, for (a) CNTL_6MAY, (b) 8KM_6MAY, and

(c) CNTL_6MAYminus 8KM_6MAY. The CNTL 15m s21 contour is overlaid in each panel to aid comparison. TheRRMSE (;100%) is

annotated in (c).
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FIG. 10. Two-dimensional vertical velocity energy spectra averaged over lowest 5 km of ELRENO

simulations at (a) t 5 0, (b),(c) t 5 1, (d),(e) t 5 5, and (f),(g) t 5 10min. Results are shown for an

arbitrarily selected ensemblemember in (b),(d), and (f) and for simulations repeatedwithout IC noise

in (c),(e), and (g). Black, red, blue, green, and orange curves correspond to the CNTL and 2-, 4-, 8-,

and 16-km experiments, respectively. The dashed gray line indicates the ARW effective model res-

olution (’7Dx) derived by Skamarock (2004).
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FIG. 11. As in Fig. 10, but for CNTL energy spectra (black) and filtered-IC ELRENO error energy

spectra (colors) at (a) t 5 0, (b),(c) t 5 1, (d),(e) t 5 10, and (f),(g) t 5 60min.
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the RMS differences between the probability-matched

ensemble means of the control and of the 2- and 4-km

ensembles in each case (ELRENO, 6MAY, and

19MAY) are similar to the RMS differences between

the probability-matched ensemble means and individ-

ual ensemble members. In other words, ensemble

forecast biases arising from IC resolution errors are

comparable to the ensemble spread arising from the IC

random errors. The forecast biases become dominant

in the 8- and 16-km ensembles for 6MAY and 19MAY,

but not for ELRENO. These results support the visual

inferences from Fig. 5.

The much smaller sensitivity of the ELRENO simu-

lations to IC resolution relative to both full-physics

simulations raises an important question: is this a con-

sequence of using idealized model settings or of some

aspect of the ELRENO storm or larger-scale environ-

ment (apart from its initial homogeneity)? Definitively

answering this question is beyond the scope of this in-

vestigation, but the error evolution analysis that follows

suggests that intrastorm error growth may be slower on

the examined time scales if IC resolution errors do not

exist in the storm environment—that is, if the environ-

ment is homogeneous, as in the ELRENO simulations.

Figure 7 depicts the evolution of four types of IC error in

the 19MAY experiments; results for 6MAY are very

similar (not shown). The first column of Fig. 7 shows the

true w field ;5km AGL at several times in the simula-

tion. Comparing w errors arising solely from the in-

troduction of the random IC perturbations (second

column) with w errors arising solely from degraded IC

resolution (fourth column) reveals that, within the storm

environment, errors associated with degraded IC res-

olution grow much larger in situ than do the random

perturbations. Errors that arise anywhere in the

domain, either within (second column) or outside of the

storms (not shown), are ultimately propagated through-

out by gravity- and soundlike waves, initiating rapid error

growth in convectively unstable regions as inHohenegger

and Schär (2007). This is evidenced by the rapid spread of
errors from a localized source to areas far upsteam (cf.

Figs. 7mand 7h). Thewaves presumed responsible for the

FIG. 12. Reflectivity (dBZ; shading) ;2 km AGL at t 5 60min in (a)–(e) ELRENO, (f)–( j) 6MAY, and (k)–(o) 19MAY probability-

matched ensemblemeans. (left)–(right) CNTL and 2-, 4-, 8-, and 16-km ensembles. TheCNTL 30-dBZ contour is overlaid in each panel to

facilitate comparison.
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error propagation are visually evident in horizontal cross

sections of w and pressure (not shown) and are an ex-

pected consequence of the model response to both rapid

storm evolution and to the imbalances created by the

introduction of IC errors (e.g., Potvin andWicker 2013b).

Since the storm environment in ELRENO is homoge-

neous and therefore not subject to IC resolution errors,

the error evolution therein is much slower (not shown),

and therefore intrastorm error growth is not so exacer-

bated by error propagation from outside the storm (or

from in situ storm interactions with environmental er-

rors). We therefore hypothesize that the use of a homo-

geneous environment in simulations artificially slows IC

resolution error growth.

At the suggestion of a reviewer, we tested this

hypothesis by repeating one of the sets of full-physics

simulations—we chose 6MAY—using idealized settings

(6MAY_IDEAL). The TRUTH simulation for this new

case was initialized using a 3-K thermal bubble and a

representative sounding computed at a model gridpoint

within the TRUTH_6MAY storm inflow. PlottingRMSE

w as a function of IC cutoff wavelength as in Fig. 6 (not

shown) revealed that the sensitivity of 6MAY_IDEAL to

IC resolution is substantially reduced relative to that of

6MAY. This supports our hypothesis that homogeneous

initial conditions reduce IC resolution sensitivity and that

using idealized simulations alone to investigate this as-

pect of predictability therefore limits the practical appli-

cability of the findings.

Much of the preceding discussion has focused on

methodological considerations for studying IC resolu-

tion errors. We now turn to deeper investigation of the

evolution of IC resolution errors in our experiments.

RRMSE time series for ensemble-meanw (Fig. 8) reveal

that the correlation between IC resolution and forecast

bias generally weakens over time in all three cases, re-

flecting the limited intrinsic predictability of the flow.

Similar behavior occurs in other examined variables

(not shown). In the ELRENO case, the IC resolution is

effectively ‘‘forgotten’’ after 60min, but again, the

weakened impact of IC resolution errors may largely be

an artifact of the initially homogeneous environment.

Bias growth in all the 19MAY simulations largely ceases

after about an hour. This is consistent with the expected

increase in influence of larger scales (relative to smaller

scales) on storm evolution as the supercells organize

FIG. 13. As in Fig. 12, but at t 5 120min.
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upscale into an MCS. This result strongly suggests that

the evolution of IC resolution errors is dependent upon

convective mode and that 19MAY is therefore less

representative than 6MAY of the error evolution in

discrete supercells.

It may be tempting to interpret RRMSE . 100% in

Fig. 8 as an indication of total loss of forecast skill. This

judgment would be premature, as Fig. 9 demonstrates. A

60-min forecast of the storm updraft in Fig. 9a that looked

similar to Fig. 9b would be very skillful by contemporary

standards, despite having substantial phase, shape, and

magnitude errors that yield a RRMSE of roughly 100%.

The weakened link between point-to-point error metrics

and forecast skill for highly localized phenomena like

FIG. 14. Time–height vertical velocity (m s21) composites for (a)–(e) ELRENO, (f)–(j) 6MAY, and (k)–(o) 19MAY probability-

matched ensemblemeans. (p)–(t) As in (a)–(e), except only the first 30min are plotted to showmore detail. (left)–(right) CNTL and 2-, 4-,

8-, and 16-km ensembles. Composite calculations for 6MAYwere restricted to the primary storm to clarify comparisons. TheCNTL70, 40,

and 50m s21 contours are overlaid in each of the ELRENO, 6MAY, and 19MAY panels, respectively.
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storms is further illustrated by the composite plots in sec-

tion 3b, which demonstrate that forecast skill is retained

throughout the forecast periods in all of our experiments.

Two-dimensional energy spectra for w (shown for

ELRENO in Fig. 10) and other variables, computed as in

Potvin andFlora (2015), indicate that initiallymissing scales

are rapidly regenerated as the model integration proceeds.

This is true even in simulations without IC perturbations

(Figs. 10c,e,g), indicating that the insertion of the IC noise

and its associated energy (cf. Figs. 10b,c) is not responsible

for the rapid recovery of missing scales, though it does

slightly accelerate the process (cf. Figs. 10d,e). By 10min

into each simulation, most of the energy at the affected

scales has been recovered (Fig. 10f). The brevity of the

periods over which interscale interactions are spuriously

absent in the simulations helps explain the limited qualita-

tive impact of the IC resolutionerrors (shown in section3b).

Two-dimensional error energy spectra forw (shown for

ELRENO in Fig. 11) illuminate the evolution of both the

IC random and IC resolution errors. In simulations ini-

tialized without noise, forecast errors initially decrease

(cf. Figs. 11a and 11c) as filtered scales (corresponding to

errors of up to 100%) rapidly regenerate. Upscale error

growth then becomes dominant, and as in the squall-line

simulations of Durran and Weyn (2016), error growth at

larger scales does not await error saturation at smaller

scales (cf. Figs. 11c and 11e), in contrast to the upscale

cascade characteristic of spatially homogeneous, statisti-

cally stationary turbulence when initial errors are pre-

dominantly small scale (e.g., Leith and Kraichnan 1972).

In the original simulations (initialized with noise), the

reduction in forecast error as filtered scales regenerate is

offset by both upscale and downscale growth of the IC

perturbations (cf. Figs. 11a–c).Whether or not IC noise is

present, error saturation occurs at all scales well before

the end of the simulation (Figs. 11f,g). Again, as Fig. 9

suggests, and the qualitative verification in the next sub-

section confirms, this does not correspond to total loss of

forecast skill. The convergence of error spectra of finer-

IC simulations to those of coarser-IC simulations is con-

sistent with the IC resolution being ‘‘forgotten’’ before

the end of the simulation. This result is broadly con-

sistent with findings by Durran and Gingrich (2014) for

simulations of spatially homogeneous, statistically

stationary turbulence initialized with and without

perturbations at wavelengths , 400 km. Error spectra

computed from the full-physics experiments (not

shown) resemble those from ELRENO, except that the

largest-scale errors remain higher in the coarser-

resolution-IC simulations through the end of the

FIG. 15. Horizontal composites (i.e., maxima over all heights and times) of vertical velocity (m s21) for (a)–(e) ELRENO, (f)–(j) 6MAY,

and (k)–(o) 19MAY probability-matched ensemble means. (left)–(right) CNTL and 2-, 4-, 8-, and 16-km ensembles. The ELRENO and

19MAY fields are rotated 408 clockwise to reduce the plotting domain size. The CNTL 30m s21 contour is overlaid in each panel.
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forecast period, consistent with the stronger correla-

tion between IC resolution and forecast error at longer

lead times in those cases (Fig. 8).

b. Qualitative error analysis

Quantitative analysis alone provides a limited view of

the practical impacts of IC errors on storm simulations and

forecasts. We therefore present qualitative (subjective)

evaluations of the error evolution in our experiments,

beginning with the reflectivity field (Figs. 12 and 13). In all

three cases, even the 16-km simulations well match the

TRUTH solution at t 5 60min (cf. Figs. 12a,e, 12f,j, and

12k,o), except that significant spurious convection has

developed in 16KM_6MAY. Displacement errors in the

primary storms are minimal, indicating that storm propa-

gation has not been substantially affected by the degraded

IC resolution. Even at t5 120min, the 16KM_ELRENO

and 16KM_19MAY simulations are remarkably similar to

their corresponding TRUTH simulations (cf. Figs. 13a,e

and 13k,o). The primary storm in the 16KM_6MAY sim-

ulation, however, is much too weak, and perhaps as a con-

sequence, displaced northeastward of the TRUTH_6MAY

storm (cf. Figs. 13f and 13j). In addition, significant spurious

convection now exists in both the 8KM_6MAY and

16KM_6MAY simulations (Figs. 13i,j). Among the three

cases, the sensitivity exhibited by the 6MAY simulations

may be the most representative of supercells, given the

hypothesized reductions in IC resolution error growth in

the ELRENO and 19MAY experiments by the homo-

geneous environment in the former and the upscale

growth of convection in the latter. Even in the 6MAY

case, though, the practical impact of 16-km IC resolution

errors on the general propagation and evolution of the

reflectivity fields of the primary storm is minor through at

least 1 h of forecast lead time.

A similar conclusion holds for the evolution of the up-

draft of the primary storm (Figs. 14 and 15). As before, the

most significant errors occur in the 16KM_6MAY simu-

lation (Figs. 14j and 15j). In all other simulations, the

overall updraft evolution is captured quitewell, despite the

large RRMSE in w (Fig. 8). In all three cases, the time

required for regeneration of the initially missing scales is

reflected in the updrafts being too weak early in the fore-

cast period. This is most clearly seen in the 16KM time–

height composites (cf. Figs. 14a,e, 14f,j, 14k,o, and 14p,t).

Consistent with the w energy spectra (Fig. 10), the time

required for the filtered-IC updrafts to attain the magni-

tudes of the TRUTH updrafts increases with the filter

(a) (b) (c) (e) (d) 

(f) (g) (h) (j) (i) 

(k) (l) (m) (o) (n) 
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FIG. 16. Horizontal composites of (a)–(e) lowest-level perturbation potential temperature (K) for ELRENO probability-matched

ensemble mean and lowest-level potential temperature (K) for (f)–( j) 6MAY and (k)–(o) 19MAY probability-matched ensemble means.

(left)–(right) CNTL and 2-, 4-, 8-, and 16-km ensembles. The ELRENOand 19MAYfields are rotated 408 clockwise to reduce the plotting
domain size. The CNTL 27-, 294-, and 292-K contours are overlaid in each ELRENO, 6MAY, and 19MAY panel, respectively.
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cutoff wavelength. Forecast errors distinctly increase

as IC resolution is degraded in the 6MAY and 19MAY

experiments, but not in the ELRENO experiments,

consistent with the RRMSE time series (Fig. 8).

The relative insensitivity of storm evolution to IC res-

olution also extends to u (shown for the lowest model

level in Fig. 16) and total rainfall (Fig. 17). The de-

pendence of forecast errors on IC resolution is again

generally stronger in the full-physics than in the

ELRENO simulations. The cold pool cores are too warm

in all of the filtered-IC simulations, as can readily be

deduced by comparing composite temperatures within

the contour-outlined regions (e.g., cf. Figs. 16a–e), but the

number of cases examined is too small to deduce whether

this is a general result. The 16KM_19MAYcold pools are

substantially too warm prior to the upscale growth into an

MCS (cf. Figs. 16l–o and Fig. 16k within 292-K contour)

but become more consistent with the TRUTH cold pools

thereafter (cf. at x . 140km). Rainfall errors in all the

ELRENO experiments are modest (Figs. 17a–e),

whereas more practically significant rainfall errors occur

in the 8KM_6MAY, 16KM_6MAY (Figs. 17i,j), and

16KM_19MAY (not shown) experiments. Still, none of

the rainfall errors are particularly large by contemporary

forecasting standards.

Finally, we turn to the most sensitive variable of those

examined—vertical vorticity (Figs. 18 and 19). Intense

TLVs occur at multiple times in TRUTH_ELRENO

(Figs. 18a, 19a). During the first three episodes, which

occur within roughly the first hour of the simulation,

vertical vorticity errors generally increase as the IC

resolution is degraded (Figs. 18a–e and 19). During the

last hour of the simulation, the correlation between

forecast error and IC resolution error becomes weak,

consistent with previous results. In both the 6MAY and

19MAY cases, a TLV that occurs within the first 15min

of TRUTH does not occur in the 16KM simulations

(Figs. 18j,o), which is not surprising given the required

time for missing scales to regenerate. While timing

errors in the subsequent weaker low-level spinups

generally increase with filter cutoff wavelength, gross

similarities with the TRUTH simulations are retained

even in the 8KM and 16KM experiments. Generally

speaking, the evolution of low-level rotation is not

unduly sensitive to IC resolution in our experiments.

4. Conclusions and future work

Idealized and full-physics supercell simulations were

run using differing initial-condition (IC) resolutions to

investigate 0–2-h forecast impacts of unanalyzed IC

scales. The primary conclusions are as follow:

1) The strong sensitivity of convection to random

perturbations renders the deterministic framework

inappropriate for investigating impacts of IC resolu-

tion errors. More generally, predictability studies in

which the errors of interest are potentially sensitive

to small changes in the flow should adopt an ensem-

ble approach to ensure representative results.

FIG. 17. Horizontal composites of total rainfall (in.) for (a)–(e) ELRENO and (f)–(j) 6MAY probability-matched

ensemble means for (a),(f) CNTL and (b),(g) 2-, (c),(h) 4-, (d),(i) 8-, and (e),( j) 16-km ensembles. The ELRENOfields

are rotated 408 clockwise to reduce the plotting domain size. The CNTL 1-in. contour is overlaid in each panel.
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2) Missing scales in the ICs of simulated supercells

regenerate within the first 10–20min of model

integration.

3) Errors arising from the initially missing scales evolve

similarly to previously investigated initial-condition

perturbations—they rapidly grow upscale and prop-

agate throughout the domain, initiating rapid error

growth within unperturbed regions of moist convec-

tion. The resulting forecast biases generally increase

as initial-condition resolution decreases.

4) Homogeneous simulations may not well represent

supercell forecast sensitivities to IC resolution since

the growth of errors in the storm environment and

their subsequent propagation into convectively ac-

tive regions is artificially suppressed.

5) The initial absence of small IC scales does not

noticeably modulate ensemble forecast spread.

6) Spectral analysis and other objective methods involv-

ing point-to-point verification are insufficient to assess

the operational significance of errors in forecasts

of organized convection. For example, error satu-

ration can result largely frommodest phase errors in

discrete storm structures and, therefore, does not

necessarily indicate total loss of forecast skill. A

combination of objective and subjective evaluation

is critical.

7) The evolution of important storm features and

attributes is relatively insensitive to IC resolution

errors through 2-h forecast lead times. This indicates

that smaller-scale processes within organized con-

vection are primarily determined by larger scales, at

least once storms have reached maturity.

8) Near-future analysis resolution limitations of real-

time ensemble prediction systems (horizontal grid

spacings of 1–3 km) will not severely diminish the

practical predictability of organized storms, as long

as analyses are downscaled to subkilometer forecast

grids. Forecast skill will instead be primarily limited

by other types of model error and by the lack of

observations of the storm environment.

FIG. 18. Time–height vertical vorticity (s21) composites for (a)–(e) ELRENO, (f)–(j) 6MAY, and (k)–(o) 19MAY probability-matched

ensemble means. (left)–(right) CNTL and 2-, 4-, 8-, and 16-km ensembles. The CNTL 0.1-s21 contour is overlaid in each panel.
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Until real-time data assimilation systems employ

convection-resolving forecast grids, limited model reso-

lution will produce significant errors even at scales that

are resolved on the model grid (e.g., Potvin and Flora

2015). Thus, downscaling coarse analyses created from

traditional, single-resolution data assimilation to fine-

scale forecast grids may produce larger forecast errors

in practice than indicated by our experiments.

Resolvable-scale IC errors arising from limited forecast

model resolution can be mitigated using mixed-

resolution data assimilation methods, which use one

or more high-resolution ensemble members to update

the analysis at each cycle. We recommend that the value

added by mixed- versus single-resolution data assimila-

tion be assessed using both simulation and real-world

frameworks.

The work presented herein could be extended in

other valuable ways. The relative importance of

missing IC scales (and other small-scale errors) to

storm prediction may vary substantially with larger-

scale storm environment, as do forecast grid resolu-

tion errors (Potvin and Flora 2015). This potential

sensitivity should be explored by repeating our

analysis for a broad range of synoptic conditions, in-

cluding the low-CAPE, high-shear scenario typified in

the southeastern United States. The sensitivity to IC

resolution may also vary substantially with model

resolution, which is an important consideration given

that operational forecast models (especially ensem-

bles) will not explicitly model convection for years to

come. It would also be useful to explore whether/how

the impact of missing IC scales differs for newly de-

veloped storms versus mature storms like those ex-

amined in this study. Finally, we recommend that

errors in real-world, subkilometer ensemble forecasts

be compared to errors in simulated forecasts like

those herein in order to assess the combined impact of

contemporary parameterization and large-scale anal-

ysis errors. Better understanding of all of these aspects

of storm predictability would greatly benefit the design

of future data assimilation and prediction systems and

interpretation of their forecast output.
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